HEINZMANN®
Engine & Turbine Management

Digital Basic System

HELENOS I

DG 6.2 - 02
DG 6V.2 - 02
DG 10.2 - 02
<table>
<thead>
<tr>
<th>Warning</th>
<th>Read this entire manual and all other publications appertaining to the work to be performed before installing, operating or servicing your equipment. Practice all plant and safety instructions and precautions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Danger</td>
<td>Failure to follow instructions may result in personal injury and/or damage to property. HEINZMANN will refuse all liability for injury or damage which results from not following instructions</td>
</tr>
<tr>
<td>Danger! High Voltage</td>
<td>Please note before commissioning the installation: Before starting to install any equipment, the installation must have been switched dead! Be sure to use cable shieldings and power supply connections meeting the requirements of the European Directive concerning EMI. Check the functionality of the existing protection and monitoring systems.</td>
</tr>
<tr>
<td>Danger</td>
<td>To prevent damages to the equipment and personal injuries, it is imperative that the following monitoring and protection systems have been installed: Overspeed protection acting independently of the actuator Overtemperature protection HEINZMANN will refuse all liability for damage which results from missing or insufficiently working overspeed protection Generator installation will in addition require: Overcurrent protection Protection against faulty synchronization due to excessive frequency, voltage or phase differences Reverse power protection</td>
</tr>
<tr>
<td>Danger</td>
<td>Overspeeding can be caused by: Failure of the voltage supply Failure of the actuator, the control unit or of any accessory device Sluggish and blocking linkage</td>
</tr>
</tbody>
</table>
The examples, data and any other information in this manual are intended exclusively as instruction aids and should not be used in any particular application without independent testing and verification by the person making the application.

Independent testing and verification are especially important in any application in which malfunction might result in personal injury or damage to property.

HEINZMANN make no warranties, express or implied, that the examples, data, or other information in this volume are free of error, that they are consistent with industry standards, or that they will meet the requirements for any particular application.

HEINZMANN expressly disclaim the implied warranties of merchantability and of fitness for any particular purpose, even if **HEINZMANN** have been advised of a particular purpose and even if a particular purpose is indicated in the manual.

HEINZMANN also disclaim all liability for direct, indirect, incidental or consequential damages that result from any use of the examples, data, or other information contained in this manual.

HEINZMANN make no warranties for the conception and engineering of the technical installation as a whole. This is the responsibility of the user and of his planning staff and specialists. It is also their responsibility to verify whether the performance features of our devices will meet the intended purposes. The user is also responsible for correct commissioning of the total installation.

NOTICE

The engine, turbine or any other type of power plant must be equipped with separate overspeed-, overtemperature- resp. overpressure shutdown devices operating independently of the electronic speed governor. Such devices are absolutely indispensable in order to protect operating personnel against injuries and the engine against damages that may occur in case of a runaway or of a failure of the electronic speed control.

HEINZMANN retains the right to introduce technical changes!
Chart of system HELENOS I

HELENOS I

for engines from approx. 30 kW up to approx. 1000 kW

<table>
<thead>
<tr>
<th>Basic System DG 62 - 02</th>
<th>Basic System DG 6V2 - 02</th>
<th>Basic System DG 102 - 02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Unit DC 62 - 02</td>
<td>Control Unit DC 6V2 - 02</td>
<td>Control Unit DC 102 - 02</td>
</tr>
<tr>
<td>Actuator StG 6 - *</td>
<td>Actuator StG 6 - * V</td>
<td>Actuator StG 10 - *</td>
</tr>
<tr>
<td>Setpoint Pot. SW …</td>
<td>Setpoint Pot. SW …</td>
<td>Setpoint Pot. SW …</td>
</tr>
<tr>
<td>Pick-up IA …</td>
<td>Pick-up IA …</td>
<td>Pick-up IA …</td>
</tr>
</tbody>
</table>
Contents

Page

1. General Remarks .. 1

2. Mode of Operation .. 4

3. Block Diagram of the Digital Governor with Control Unit DC ... 2 - 02 5

4. Pick-up IA ... 6
 4.1. Specification .. 6
 4.2. Installation ... 6
 4.3. Tooth profile .. 7
 4.4. Clearance of Magnetic Pick-up ... 7
 4.5. Mounting Measurements .. 8
 4.6. Redundant Speed Signal ... 8

5. Speed Setpoint Potentiometers and Sensors .. 9
 5.1. Speed Setpoint Potentiometer SW 01 - 1 - o (one turn) 9
 5.2. Speed Setpoint Potentiometer SW 02 - 10 - o (10 turns) 9
 5.3. Setpoint Value Adjustment by Current Signal 10
 5.4. Digital Presetting of Setpoint Values ... 10
 5.5. Setpoint Value Adjustment by Pedal .. 10
 5.6. Pressure Sensors .. 10
 5.7. Temperature Sensors ... 11

6. Control Unit DC ... 2 - 02 .. 12
 6.1. Specification .. 12
 6.2. Measurements .. 14

7. Actuators ... 16
 7.1. Design and Mode of Operation ... 16
 7.2. Installation ... 17
 7.3. Specification .. 18
 7.4. Measurements .. 19

8. Regulating Linkage .. 22
 8.1. Length of Regulating Rack .. 22
 8.2. Connecting Linkage .. 22
 8.3. Linkage Adjustment for Diesel Engines ... 23
 8.4. Linkage Adjustment for Carburettor Engines .. 24
Contents

9. **Electric Connection** ... 25
 9.1. Connection of Shielding ... 25
 9.2. Connection for Generator Set with digital accessories ... 27
 9.3. Connection for Generator Set with analogue accessories ... 29
 9.4. Connection for Vehicle Operation .. 31
 9.5. Connection for Locomotive Operation .. 33
 9.6. Connection for Locomotive Operation .. 35
 9.7. Connection for Marine Operation .. 37
 9.8. Connection for Marine Operation .. 39
 9.9 Connection of Power Supply ... 41
 9.10. I/O- Configuration according to Customers Demand .. 42

10. **Programming Possibilities** .. 43
 10.1. Programming by the Manufacturer ... 43
 10.2. Programming with the Hand- Held Programmer 2 ... 43
 10.3. Programming by PC ... 43
 10.4. Programming with User Masks .. 44
 10.5. Transferring Data Sets ... 44

11. **Starting the Engine - Brief Instructions** .. 45

12. **Plug Connections** ... 47

13. **Ordering Specifications** .. 48
 13.1. General Informations .. 48
 13.2. Cable Harness .. 49
 13.3. Cable Lengths ... 50
 a) L1 = Control unit - battery ... 50
 b) L2 = Control unit - actuator ... 50
 c) L3 = Control unit - setpoint adjusting unit .. 50
 d) L4 = Control unit - pick-up ... 51
 e) L5 = Control unit - sensor inputs .. 51
 f) L6 = Control unit - digital inputs ... 51
 g) L7 = Control unit - overspeed protection .. 51
 h) L8 = Control unit - controlled current output ... 51
 i) L9 = Control unit - status indicator .. 51
 j) L10 = Control unit - analogue outputs .. 52
 k) L11 = Control unit - frequency input ... 52
 l) L12 = Control unit - PWM input .. 52
 m) L13 = Communication .. 52

14. **Download of Manuals** .. 53
1. General Remarks

Heinzmann digital governors with control unit DC ... 2 - 02 constitute speed governors offering a medium range of functions.

In addition to speed regulation, the following functions are available:

a) Starting Fuel Flow Adjustment

When setting starting fuel flow, starting minimum fuel flow or starting maximum fuel flow are available as alternatives. Furthermore, variable starting fuel flow can be provided, by which starting fuel flow is increased automatically during start-up.

b) Speed Ramp

For applications in which speed is not supposed to respond as fast as possible to changes of setpoint values (e.g., locomotive operation), a speed ramp is available which according to requirements may be programmed separately for increasing or decreasing speed.

c) Fixed Fuel Limitation

For the stop-position and the maximum fuelling position "electric catches" can be provided. This will prevent the governor's thrust from affecting the terminal stops of the injection pump, etc.

d) Speed Dependent Fuel Limitation

For variable speed governors, there is provided an option of programming speed dependent limit curves. Thus, for any speed, torque can be reduced as is permissible for the engine or desired by the user.

e) Boost Pressure Dependent Fuel Limitation

For turbocharged engines, fuelling can be reduced to achieve smokeless operation in case of missing boost pressure (e.g., starting or load change). The respective limit curves can be programmed accordingly.
1. General Remarks

f) **Idling and Maximum Speed Control**

For vehicle application, the governor can be made to operate as an idling and maximum speed controller. In addition, one fixed intermediate speed is available, e.g., for an application combining driving and stationary mode (e.g., generator at power take-off). If necessary, a change-over switching of the droop can be provided, i.e., during stationary operation also droop zero is possible.

g) **Temperature Dependent Idling Speed**

For low temperatures, the engine can be run at some higher idling speed. With the engine warming up, idling speed is reduced to its normal value.

h) **Velocity Limitation**

For vehicles velocity limitations may be provided.

i) **Velocity Regulation**

For vehicles velocity regulation can be provided, by which the vehicle is made to maintain some preset velocity.

k) **Oil Pressure Monitoring**

For the purpose of oil pressure monitoring, speed/pressure dependent limit curves can be provided. If oil pressure is too low, an alarm is given; if oil pressure continues to drop, the engine is shut down.

l) **Load Regulation System**

For diesel-electric locomotive operation, a load regulation system can be provided, by which generator output is regulated in dependence on speed resp. load.

m) **Anti Stick Slip Device**

For locomotive operation, an anti stick slip device can be provided.
1. General Remarks

n) Accessories

Accessories such as synchronizing units, load measuring units, disturbance variable compensation units can be connected via a CAN-Bus within the control unit. The CAN-Bus may also be used to implement load distribution by equal fuelling (e.g., two engines on one gear).

o) Output Signals

For speed and actuator travel, proportional signals are available in the range of 4–20 mA. They can be used for purposes of display or for further processing (e.g., switches). Furthermore, if errors occur at the sensors or within the control system, an alarm is given.

p) Operating Data Storage

On request, operating data storage can be provided, by which in cases of disturbances and failures the causes may be traced back even at some later time.

When selecting and determining the functions, it has to be ascertained whether the hardware equipment suffices with respect to the total range of functions.
2. Mode of Operation

The actual speed of the engine is read by a pulse pick-up from a cog wheel, preferably from the starter gear. The microprocessor (CPU) of the control unit compares the actual speed with the preset value. If differences are stated, the new actuator signal is calculated by the CPU and transmitted to the actuator via the output stage. Feedback from the actuator indicates the current position of the output shaft thus allowing optimum signal adjustment by the CPU.

As the governor comprises an I-fraction and as for any load level the speed is permanently compared with a fixed preset value, speed can be kept constant also in steady state, i.e., droop is zero.

For applications requiring droop, the speed related to the respective fuelling is calculated by the CPU and entered as correction of the setpoint value.

During standstill, a particular circuit ensures that only the current of the control unit is received by the governor, but no current flows to the actuator motor.
3. Block Diagram of the Digital Governor with Control Unit DC ... 2 - 02

Figure 1: Blockdiagram DC ... 2 - 02
4. Pick-up

4. Pick-up IA ...

4.1. Specification

<table>
<thead>
<tr>
<th>Specification Parameter</th>
<th>IA 02 - 76 to IA 12 - 102</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatur Range</td>
<td>-55 °C to +120 °C</td>
</tr>
<tr>
<td>Output Voltage</td>
<td>0,5 to 10 Volt ~ (AC)</td>
</tr>
<tr>
<td>Resistance</td>
<td>approx. 52 Ohm</td>
</tr>
<tr>
<td>Distance from Pick-up Wheel</td>
<td>0,5 to 0,8 mm</td>
</tr>
<tr>
<td>Protection grade</td>
<td>IP 54</td>
</tr>
</tbody>
</table>

4.2. Installation

The installation of the pick-up has to be arranged in such a way as to obtain a frequency as high as possible. Normally, the HEINZMANN governors are designed for a maximum frequency of 12000 Hz. Frequency (by Hz) is calculated according to the formula

\[f (\text{Hz}) = \frac{n(1/ \text{min}) \times z}{60} \]

\[z \quad = \quad \text{number of teeth on the pick-up wheel} \]

Example:

\[n = 1.500 \]
\[z = 160 \]

\[f = \frac{1500 \times 160}{60} = 4.000 \text{ Hz} \]

NB: It should be taken care that the speed can be measured by the pulse pick-up without any bias. For best results therefore, the speed pick-up should take the engine speed from the crankshaft. A suitable position for this is, e.g., the starter gear (but not the injection pump wheel).

The pick-up gear must consist of magnetic material (e.g., steel, cast iron).
4.3. Tooth profile

Any tooth profile is admissible. The top width of the tooth should be 2.5 mm minimum, the gap and the depth of the gap at least 4 mm. For index plates the same dimensions are valid.

Due to tolerances, a radial arrangement of the magnetic pick-up is preferable.

4.4. Clearance of Magnetic Pick-up

The distance between the magnetic pulse pick-up and the tooth top should range from 0.5 and 0.8 mm. (It is possible to screw in the magnetic pick-up till it touches the tooth and then unscrew it for about half a turn.)

![Figure 2: Clearance of pick-up](image-url)
4.5. Mounting Measurements

Figure 3: Measurements of pick-up

<table>
<thead>
<tr>
<th>Measures Type</th>
<th>L (mm)</th>
<th>G</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 - 38</td>
<td>38</td>
<td>M 16 x 1,5</td>
<td>appropriate plug</td>
</tr>
<tr>
<td>02 - 76</td>
<td>76</td>
<td>M 16 x 1,5</td>
<td>SV6-IA-2K</td>
</tr>
<tr>
<td>03 - 102</td>
<td>102</td>
<td>M 16 x 1,5</td>
<td></td>
</tr>
<tr>
<td>11 - 38</td>
<td>38</td>
<td>5/8"-18UNF-2A</td>
<td></td>
</tr>
<tr>
<td>12 - 76</td>
<td>76</td>
<td>5/8"-18UNF-2A</td>
<td></td>
</tr>
<tr>
<td>13 - 102</td>
<td>102</td>
<td>5/8"-18UNF-2A</td>
<td></td>
</tr>
</tbody>
</table>

Ordering specification, e.g. IA 02-76

4.6. Redundant Speed Signal

If precautions are to be taken with regard to failures of the pulse pick-up, a second pulse pick-up can be connected to the control unit. In case that an electric generator with terminal W is available, this signal may be used for emergency operation as well as any other signal of a tachogenerator.

In case of a failure on puls pick-up 1, the governor automatically switches over to the redundant speed signal and gives an alarm.
5. Speed Setpoint Potentiometers and Sensors

Dependent on particular applications, a series of setpoint potentiometers are available for the HEINZMANN Digital Controls.

5.1. Speed Setpoint Potentiometer SW 01 - 1 - o (one turn)

- **Displacement Angle**: approx. 312°
- **Resistance**: 5 kOhm
- **Temperature Range**: -55 °C to + 120 °C
- **Protection**: IP 00

![Figure 4: Potentiometer SW 01 - 1](image)

5.2. Speed Setpoint Potentiometer SW 02 - 10 - o (10 turns)

- **Displacement Angle**: 10 turns
- **Resistance**: 5 kOhm
- **Temperature Range**: -55 °C to + 105 °C
- **Protection**: IP 00

![Figure 5: Potentiometer SW 02 - 10](image)
On request, the potentiometers, as specified under 5.1 and 5.2, can be supplied with analogue adjustment knob with lock in place of the standard rotating knob. In this case, ordering specification is SW..-..-m.

Equally, instead of the knob a clamping fixture can be installed. Ordering specification is to changed to SW ..-..-k.

5.3. Setpoint Value Adjustment by Current Signal

For the speed setpoint value a current signal of 4–20 mA can be directly connected to the control unit. If the signal fails, the governor will set minimum speed according to the 4 mA value or a programmable substitute value.

5.4. Digital Presetting of Setpoint Values

A 4 bit binary coded digital input for 16 speed levels from n_{min} to n_{max} can be directly connected to the control unit.

5.5. Setpoint Value Adjustment by Pedal

This unit is basically an angular position transducer that translates a foot pedal into a proportional current or voltage for 0 - 45° rotation. The resulting output can be used for speed setting. For more information refer broschure E 83 005 - e.

5.6. Pressure Sensors

For pneumatic setpoint adjustment are pressure sensors available as follows:

<table>
<thead>
<tr>
<th>Pressure Range</th>
<th>Sensor Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 10 bar</td>
<td>DSG 01</td>
</tr>
<tr>
<td>up to 5 bar</td>
<td>DSG 02</td>
</tr>
</tbody>
</table>

As boost pressure sensor for a range up to 2 bar the pressure sensor DSG 03 is available.
5.7. Temperature Sensors

As temperature sensors several types are to be utilized:

- NTC (\(R_{25} = 2000 \, \Omega \))
- Ni1000
- Pt1000
- Pt200
6. Control Unit DC ... 2 - 02

6.1. Specification

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Voltage</td>
<td>24 V DC (12 ... 32 V DC)</td>
</tr>
<tr>
<td>Maximum Voltage</td>
<td>36 V DC absolute</td>
</tr>
<tr>
<td>Minimum Voltage</td>
<td>9 V DC absolute, short term</td>
</tr>
<tr>
<td>Maximum Ripple Voltage</td>
<td>maximum 10 % with 100 Hz</td>
</tr>
<tr>
<td>Permissible Voltage Drop at Maximum Voltage of Actuator</td>
<td>maximum 10 % in control device</td>
</tr>
<tr>
<td>Fuse Protection of Governor</td>
<td>16 A, slow</td>
</tr>
<tr>
<td>Current Consumption</td>
<td>approx. 0.2 A + current of actuator at 24 V DC</td>
</tr>
<tr>
<td>Operating Ambient Temperature</td>
<td>-40 °C to +70°C</td>
</tr>
<tr>
<td>Storing Temperature</td>
<td>-55 °C to +85 °C</td>
</tr>
<tr>
<td>Humidity</td>
<td>up to 100 %</td>
</tr>
<tr>
<td>Control Frequency</td>
<td>200 to 12,000 Hz</td>
</tr>
<tr>
<td>Steady State Variation</td>
<td>±0.25 % of rated speed</td>
</tr>
<tr>
<td>Protection grade</td>
<td>DC ... 2 - 02 - 00 IP 00</td>
</tr>
<tr>
<td></td>
<td>DC ... 2 - 02 - 55 IP 55</td>
</tr>
<tr>
<td>Weight</td>
<td>DC ... 2 - 02 - 00 approx. 1.2 kg</td>
</tr>
<tr>
<td></td>
<td>DC ... 2 - 02 - 55 approx. 3 kg</td>
</tr>
</tbody>
</table>
Remark

The control unit is available with terminal strip (DC ... 2 - 02 - 00) or with plug-in connectors (DC ... 2 - 02 - 55) alternatively. At delivery of the control unit the exact governor type together with identification of housing, software version and serial number is printed on the type plate.

Example: DC 102 - 02 - 55 - 12700
6.2. Measurements

Control Unit with plug-in connectors (DC ... 2 - 02 - 55)

Figure 6: Housing of DC ... 2 - 02 - 55
Control Unit with terminal strip (DC ... 2 - 02 - 00)

Figure 7: Housing of DC ... 2 - 02 - 00
7. Actuators

7.1. Design and Mode of Operation

The actuator torque is generated by a DC disk armature motor and transmitted to the governor output shaft by way of a gearbox.

The use of special materials and long-time lubricants assures maintenance-free operation and long working life of the actuators.

A feedback cam is mounted on the governor output shaft which is scanned contactlessly by a probe, thus transmitting the precise position of the output shaft to the control unit.
If the actuator strikes against a stop, as may occur, e.g., under parallel mains operation or may be caused by engine overload or cylinder failure, the current limitation will take effect after approx. 20 seconds; by this the current to the actuator is reduced to a value that cannot harm the motor.

Altogether, this type of actuator provides the following advantages:

- High regulation power working in both directions.
- Extremely low current consumption during steady state and relatively low current consumption on change of load.
- Indifference to slow voltage changes of the supply; abrupt voltage changes cause governor disturbances.

7.2. Installation

The actuator must be mounted firmly on the engine by means of reinforced brackets. Unstable arrangements, as caused by weak bracket material or missing stiffenings, have to be avoided by all means; they are bound to intensify vibrations, which will lead to premature wear of the actuator and the connecting linkage!
7.3. Specification

<table>
<thead>
<tr>
<th>Specification</th>
<th>StG 6 - *</th>
<th>StG 6 - * V</th>
<th>StG 10 - *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective rotation at the output shaft</td>
<td>36 °</td>
<td>36 °</td>
<td>36 °</td>
</tr>
<tr>
<td>Max. torque at the governor output shaft (direction stop)</td>
<td>approx. 4 Nm</td>
<td>approx. 6 Nm</td>
<td>approx. 10 Nm</td>
</tr>
<tr>
<td>Holding moment in current limitation</td>
<td>approx. 2 Nm</td>
<td>approx. 3 Nm</td>
<td>approx. 5 Nm</td>
</tr>
<tr>
<td>Response time 0-100 % without load</td>
<td>approx. 70 ms</td>
<td>approx. 75 ms</td>
<td>approx. 80 ms</td>
</tr>
<tr>
<td>Current consumption of the whole governor:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in steady state condition</td>
<td>approx. 1 A</td>
<td>approx. 1 A</td>
<td>approx. 1 A</td>
</tr>
<tr>
<td>on change of load</td>
<td>approx. 3 - 4 A</td>
<td>approx. 3 - 4 A</td>
<td>approx. 3-4 A</td>
</tr>
<tr>
<td>max. current</td>
<td>approx. 4.5 A</td>
<td>approx. 4.5 A</td>
<td>approx. 4.5 A</td>
</tr>
<tr>
<td>in current limitation</td>
<td>approx. 2.5 A</td>
<td>approx. 2.5 A</td>
<td>approx. 2.5 A</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-55°C to +110°C</td>
<td>-55°C to +110°C</td>
<td>-55°C to +110°C</td>
</tr>
<tr>
<td>Ambient temperature in operation</td>
<td>-25°C to +90°C</td>
<td>-25°C to +90°C</td>
<td>-25°C to +90°C</td>
</tr>
<tr>
<td>Ambient temperature special version</td>
<td>-40°C to +90°C</td>
<td>-40°C to +90°C</td>
<td>-40°C to +90°C</td>
</tr>
<tr>
<td>Humidity</td>
<td>up to 100 %</td>
<td>up to 100 %</td>
<td>up to 100 %</td>
</tr>
<tr>
<td>Protection grade</td>
<td>IP 55</td>
<td>IP 55</td>
<td>IP 55</td>
</tr>
<tr>
<td>Weight</td>
<td>approx. 3.0 kg</td>
<td>approx. 3.1 kg</td>
<td>approx. 3.8 kg</td>
</tr>
</tbody>
</table>
7.4. Measurements

Figure 9: Actuators StG 6 - 01 and StG 6 - 02V
7. Actuators

Figure 10: Actuator StG 10 - 01
8. Regulating Linkage

8.1. Length of Regulating Rack

The length of the regulating rack is determined in such a way that approx. 90% of the governor output shaft adjustment angle can be used. Based on this, the rack length L of governors with 36° adjustment angle is calculated as $L = 1.8 \ a$, "a" being the travel distance of the injection pump or the carburettor.

8.2. Connecting Linkage

The connecting linkage from the governor to the injection pump or the carburettor should be length-adjustable and have a (pressure or tension) elastic link. If the actuators torque is less than 10 Nm, the elastic link is not needed. If possible, joint rod heads in accordance with DIN 648 should be used as connecting links. The linkage must operate easily and without play.

In case of friction or backlash in the linkage connecting actuator and injection pump resp. throttle valve no optimal control is possible.
8.3. Linkage Adjustment for Diesel Engines

The length of the connecting linkage is adjusted in such a way that with the governor in stop position the injection pump is set to 0 - 2 fuel marks. (Travel of the injection pump control rack is limited by the governor.)

The resistance of the pressure elastic link is overcome when the control rack has reached the full load stop and the speed continues to decrease (overload). Furthermore, the elastic link is overcome when stopping via the emergency switch.
8.4. Linkage Adjustment for Carburettor Engines

For carburettor or gas engines, the length of the connecting linkage is adjusted in such a way that with the governor in full load position the throttle valve is completely open. In idling speed position, the elastic link must be slightly overcome. This allows adjustment of the idle screw without changing the governor adjustment.

Figure 12: Linkage for gas engines
9. Electric Connection

9.1. Connection of Shielding

To avoid electromagnetic influences it is necessary to connect cable shields at both ends. This includes shielding from control housing to sensors, from control housing to potentiometers, from control housing to actuator and from control housing to accessory units. If there is a potential difference between the control housing and any of these other components, to avoid currents via the shielding it is necessary to run a separate wire from the control housing to each of these components.

Figure 13: Connection of separate wire

At cable ends without plugs (e.g. terminal strip or pins) the shielding must be connected at the housing near the contacts.

Figure 14: Shield connection without plug
In case of a plug connection the shielding is jammed in the strain relief of the plug.

Figure 15: Shield connection in the plug
9.2. Connection for Generator Set with digital accessories

Example for parallel- and mains operation

Figure 16: Connections with plugs (IP 55) for genset with digital accessories
Figure 17: Connections with terminal strip (IP 00) for genset with digital accessories
9.3. Connection for Generator Set with analogue accessories

Example for parallel- and mains operation

Figure 18: Connections with plugs (IP 55) for genset with analogue accessories
Figure 19: Connections with terminal strip (IP 00) for genset with analogue accessories
9. Electric Connection

9.4. Connection for Vehicle Operation

Figure 20: Connections with plugs (IP 55) for vehicle operation
9. Electric Connection

Figure 21: Connections with terminal strip (IP 00) for vehicle operation
9. Electric Connection

9.5. Connection for Locomotive Operation

Example for 16 speed levels

Figure 22: Connections with plugs (IP 55) for locomotive with speed steps
9. Electric Connection

Figure 23: Connections with terminal strip (IP 00) for locomotive with speed steps

Cable Size
1. up to 10 m 2.5 mm²
 over 10 - 20 m 4.0 mm²
 over 20 - 40 m 6.0 mm²
2. up to 15 m 2.5 mm²
 over 15 - 30 m 4.0 mm²
ELSE 0.75 mm²
9.6. Connection for Locomotive Operation

Speed adjustment by current signal

Figure 24: Connections with plugs (IP 55) for locomotive with current input
9. Electric Connection

Figure 25: Connections with terminal strip (IP 00) for locomotive with current input
9.7. Connection for Marine Operation

Example for twin operation: 2 engines with 1 propeller

Figure 26: Connections with plugs (IP 55) for marine twin operation
Figure 27: Connections with terminal strip (IP 00) for marine twin operation
9.8. Connection for Marine Operation

Example for single engines

Figure 28: Connections with plugs (IP 55) for marine single operation
9. Electric Connection

Figure 29: Connections with terminal strip (IP 00) for marine single operation

Cable Size
- I up to 10 m: 2.5 mm²
- over 10 - 20 m: 4.0 mm²
- over 20 - 40 m: 6.0 mm²
- II up to 15 m: 2.5 mm²
- over 15 - 30 m: 4.0 mm²
- Else: 0.75 mm²
9.9 Connection of Power Supply

Power Supply has to be supplied via two separate leads directly from the battery. This leads must not be connected to any other equipment.

WRONG, because the ripple voltage of the charger is fed directly into the electronic governor! This will damage the actuator.

Please note! Coils (e.g. stopping solenoid, gas valve) must be equipped with a protective circuit to eliminate high inductance voltages. Diode type e.g. 1N4002

CORRECT, because the control unit is connected directly to the battery, so that the battery buffers the ripple voltage of the charger.

Figure 30: Connection of Power Supply
9. Electric Connection

9.10. I/O- Configuration according to Customers Demand

For different modes of usage HEINZMANN suggests the input/output-configuration as shown in the following table:

<table>
<thead>
<tr>
<th>Mode of Usage</th>
<th>Input Configuration</th>
<th>Output Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...
10. Programming Possibilities

Programming the Heinzmann Digital Governor can be performed according to the possibilities described below:

10.1. Programming by the Manufacturer

During final inspection by the manufacturer, the functionality of the governor is checked by means of a test program. If the operational data for the governor are available, the test program is executed using those data. On the engine, only the dynamic values and, if necessary, the actuator position limits and sensors have to be adjusted.

10.2. Programming with the Hand-Held Programmer 2

The entire programming can be performed using the Hand-Held Programmer 2. This handy device may be conveniently used for development and for serial adjustment as well as for service purposes.

10.3. Programming by PC

Programming can also be performed using the PC. In comparison with the hand-held programmer, this method offers advantages with respect to the possibilities of having characteristic curves readily displayed on the screen and easily varied; the same holds for the time diagrams when putting the governor into operation on the engine. Furthermore, the PC offers a better overview, as the PC program presents a menu structure and is able to continuously display several parameters at a time.

The PC program also permits to save and load governor data to and from diskettes.
10. Programming Possibilities

10.4. Programming with User Masks

Principally, programming may be performed with the help of user masks that have been provided by Heinzmann or may conveniently be created by the user himself. Within a user mask, only those parameters are accessible that are actually needed.

10.5. Transferring Data Sets

Once programming with respect to a specific engine type and its application has been completed, the data set can be stored (in the hand-held programmer or on diskette). For future cases of similar applications, the data set may be downloaded into the new governors.
11. Starting the Engine - Brief Instructions

11.1 Adjust clearance of magnetic pulse pick-up.

11.2 Check program with respect to relevant parameters: number of teeth, speed, etc.

11.3 Set point potentiometer in mid-position:
 P - Gain to 50
 I - Stability to 0
 D- Derivative to 0

 If the dynamic values have already been determined for an installation, they can be programmed directly at this point.

 Attention: Overspeed protection must be guaranteed!

11.4 Start engine and run it up to nominal speed using the set point potentiometer.

11.5 Increase gain (P-fraction) up to instability and reduce until stability is attained.
 Increase stability (I-fraction) up to instability and reduce until stability is attained.
 Increase derivative (D-fraction) up to instability and reduce until stability is attained.

 With these values set, engine speed is to be disturbed briefly (e.g., by shortly pressing the stop switch), and the transient oscillations are to be observed.

11.6 Check over the entire speed range.

 If for maximum and minimum speed other values than the programmed ones should result, this will be due to tolerances of the set point potentiometer. If the speed derivation is not acceptable, it will be necessary to measure the setpoint source.
11.7 Gain-correction (P-correction) for gas engines resp. for variable speed governors with larger speed ranges; adjust map if necessary.

11.8 Checking the remaining program items, e.g., starting fuel injection, ramp time, etc.

For detailed adjustment procedures as required for items 11.2 up to 11.8 and any further options of adjustment see manual DG 07 001-e / 05-08 “Control devices for conventional injection with actuators”.

12. Plug Connections

Control Unit
DC ... 2 - 02

SV 103-DC-19 SG (010-02-183-00)
SV 103-DC-19 PG (010-02-222-00)
SV 103-DC-24 SG (010-02-185-00)
SV 103-DC-24 PK (010-02-177-00)
SV 103-DC-19 SK (010-02-165-00)
SV 103-DC-19 PK (010-02-175-00)

SV 6-IA-2 K (010-02-170-00)

Magnetic Pickup IA ...

SV 6-StG-6 G (010-02-034-00)
SV 6-StG-6 K (010-02-172-00)

Actuator StG ...

Figure 31: plugs with designation
13. Ordering Specifications

13.1. General Informations

Every data as

- supply voltage and kind of usage
- parameters, such as speeds and number of teeth on the flywheel
- sensors, such as speed probes, pressure and temperature sensors
- limitation curves
- additional functions
- monitoring functions
- input / output configuration

are noted in the brochure “Order Information Digital Speed Governors” Nr. DG 96012-e and should be transferred to HEINZMANN.
13.2. Cable Harness

Figure 32: Harness with cable numbers
13. Ordering Specifications

13.3. Cable Lengths

It is of advantage to obtain the harness together with the governor.

The necessary cable lengths and versions of units have to be registered here and transferred to HEINZMANN.

Please note: It is not possible to use all signals simultaneous because some inputs and outputs of the governor have various options depending on the application.

Version of Control Unit:
- with plugs (IP55) □
- with terminal strip (IP00) □

Version of Actuator:
- with plug (IP55) □
- with terminal strip (IP00) □

a) L1 = Control unit - battery

<table>
<thead>
<tr>
<th>Cable size</th>
<th>Up to 15 m</th>
<th>2 x 2.50 mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 1 Control unit - battery</td>
<td>...... cm</td>
<td>over 15 - 30 m</td>
</tr>
</tbody>
</table>

b) L2 = Control unit - actuator

<table>
<thead>
<tr>
<th>Cable size</th>
<th>Up to 10 m</th>
<th>2 x 2.50 mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 2.1 Control unit - actuator (feedback)</td>
<td>...... cm</td>
<td>over 10 - 20 m</td>
</tr>
<tr>
<td>L 2.2 Control unit - actuator (power)</td>
<td>...... cm</td>
<td>over 20 - 40 m</td>
</tr>
</tbody>
</table>

c) L3 = Control unit - setpoint adjusting unit

<table>
<thead>
<tr>
<th>Cable size</th>
<th>Up to 10 m</th>
<th>3 x 0.75 mm² shielded</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 3.1 Control unit - setpoint poti 1</td>
<td>...... cm</td>
<td>up to 10 m</td>
</tr>
<tr>
<td>L 3.2 Control unit - setpoint poti 2</td>
<td>...... cm</td>
<td>over 10 - 20 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>over 20 - 40 m</td>
</tr>
</tbody>
</table>
13. Ordering Specifications

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 3.3</td>
<td>Control unit - 4-20 mA input</td>
<td>2 x 0.75 mm²</td>
</tr>
<tr>
<td>L 3.4</td>
<td>Control unit - synchronizer</td>
<td>2 x 0.75 mm² shielded</td>
</tr>
<tr>
<td>L 3.5</td>
<td>Control unit - load measuring unit</td>
<td>2 x 0.75 mm² shielded</td>
</tr>
</tbody>
</table>

d) L4 = Control unit - pick-up

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 4.1</td>
<td>Control unit - pick-up 1</td>
<td>2 x 0.75 mm² shielded</td>
</tr>
<tr>
<td>L 4.2</td>
<td>Control unit - pick-up 2</td>
<td>2 x 0.75 mm² shielded</td>
</tr>
</tbody>
</table>

e) L5 = Control unit - sensor inputs

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 5.1</td>
<td>Control unit - temperature 1</td>
<td>2 x 0.75 mm²</td>
</tr>
<tr>
<td>L 5.2</td>
<td>Control unit - cooling water temperature</td>
<td>2 x 0.75 mm²</td>
</tr>
<tr>
<td>L 5.3</td>
<td>Control unit - boost pressure</td>
<td>3 x 0.75 mm²</td>
</tr>
<tr>
<td>L 5.4</td>
<td>Control unit - oil pressure</td>
<td>3 x 0.75 mm²</td>
</tr>
</tbody>
</table>

f) L6 = Control unit - digital inputs

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 6.1</td>
<td>Control unit - switch 1 - 4</td>
<td>5 x 0.75 mm²</td>
</tr>
<tr>
<td>L 6.2</td>
<td>Control unit - switch 5 - 8</td>
<td>5 x 0.75 mm²</td>
</tr>
</tbody>
</table>

g) L7 = Control unit - overspeed protection

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 7</td>
<td>Control unit - overspeed protection</td>
<td>2 x 1.50 mm²</td>
</tr>
</tbody>
</table>

h) L8 = Control unit - controlled current output

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 8</td>
<td>Control unit - contr. current output</td>
<td>2 x 1.50 mm²</td>
</tr>
</tbody>
</table>

i) L9 = Control unit - status indicator

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 9.1</td>
<td>Control unit - "Overall alarm" ind.</td>
<td>2 x 0.75 mm²</td>
</tr>
<tr>
<td>L 9.2</td>
<td>Control unit - "Overspeed" ind.</td>
<td>2 x 0.75 mm²</td>
</tr>
</tbody>
</table>
13. Ordering Specifications

j) L10 = Control unit - analogue outputs

L 10.1 Control unit - display fuel (V) cm 2 x 0.75 mm²
L 10.2 Control unit - display fuel (A) cm 2 x 0.75 mm²
L 10.3 Control unit - display speed (V) cm 2 x 0.75 mm²
L 10.4 Control unit - display speed (A) cm 2 x 0.75 mm²
L 10.5 Control unit - load sharing cm 2 x 0.75 mm²
L 10.6 Control unit - controll pitch propeller cm 2 x 0.75 mm²

k) L11 = Control unit - frequency input

L 11 Control unit - tacho cm 2 x 0.75 mm²

l) L12 = Control unit - PWM input

L 12 Control unit - PWM-in cm 2 x 0.75 mm²

m) L13 = Communication

L 13.1 Control unit - CAN - Bus cm 2 x 0.14 mm² shielded
L 13.2 Control unit - PC cm 4 x 0.14 mm² shielded
14. Download of Manuals

Technical manuals can be downloaded in pdf-format from our homepage:

www.heinzmann.com

If the desired manual should not be available there, send an e-mail to:

info@heinzmann.de

or write to:

HEINZMANN GmbH & Co. KG
Technische Redaktion
Am Haselbach 1
D-79677 Schönau/Germany

Please include the following information:

- your name
- name and address of your company
- e-mail or address where you want the manuals to be sent to (if different from above)
- item code (as on front page, bottom right) and title of the desired manual or alternatively the technical data of your HEINZMANN equipment

We would be pleased to receive your comments about the contents and presentation of our publications. Send your comments to the e-mail or address shown above please.