

Heinzmann GmbH & Co. KG Engine & Turbine Management

Am Haselbach 1 D-79677 Schönau/Germany

 Phone:
 +49 7673 8208-0

 Fax:
 +49 7673 8208-188

 Email:
 info@heinzmann.de

 www.heinzmann.com

V.A.T. No.: DE145551926

HEINZMANN[®] Engine & Turbine Controls

MODBUS

Operating Instructions

Copyright 2014 by Heinzmann GmbH & Co. KG. All rights reserved. This publication may not be reproduced by any means whatsoever or passed on to any third parties.

	The appropriate manuals must be thoroughly studied before installation, initial start-up and maintenance.
A DANGER	All instructions pertaining to the system and safety must be followed in full. Non-observance of the instructions may lead to injury to persons and/or material damage.
	HEINZMANN shall not be held liable for any damage caused through non-observance of instructions.
	Independent tests and inspections are of particular importance for all applications in which a malfunction could result in injury to persons or material damage.
	All examples and data, as well as all other information in this manual are there solely for the purpose of instruction and they may not be used for special application without the operator running independent tests and inspections beforehand.
	HEINZMANN does not guarantee, neither expressly nor tacitly, that the examples, data or other information in this manual is free from error, complies with industrial standards or fulfils the requirements of any special application.
	To avoid any injury to persons and damage to systems, the following monitoring and protective systems must be provided:
A WARNING	 Overspeed protection independent of the rpm controller
	HEINZMANN shall not be held liable for any damage caused through missing or insufficiently rated overspeed protection.
	 thermal overload protection
	The following must also be provided for alternator systems:
	 Overcurrent protection
	 Protection against faulty synchronisation for excessively-large frequency, voltage or phase difference
	 Directional contactor
	The reasons for overspeeding may be:
	– Failure of positioning device, control unit or its auxiliary devices
	 Linkage sluggishness and jamming
14	The following must be observed before an installation:
AWARNING	 Always disconnect the electrical mains supply before any interventions to the system.
	 Only use cable screening and mains supply connections that correspond with the <i>European Union EMC Directive</i>
	 Check the function of all installed protection and monitoring systems

NOTICE	 Please observe the following for electronically controlled injection (MVC): For common rail systems each injector line must be equipped with a separate mechanical flow-rate limiter For unit pump (PLD) and pump-injector unit (PDE) systems, the fuel enable is first made possible by the solenoid valve's control plunger motion. This means that in the event of the control plunger sticking, the fuel supply to the injection valve is stopped.
	As soon as the positioning device receives power, it can actuate the controller output shaft automatically at any given time. The range of the controller shaft or control linkage must therefore be secured against unauthorised access.
	HEINZMANN expressly rejects any implied guarantee pertaining to any marketability or suitability for a special purpose, including in the event that HEINZMANN was notified of such a special purpose or the manual contains a reference to such a special purpose.
	HEINZMANN shall not be held liable for any indirect and direct damage nor for any incidental and consequential damage that results from application of any of the examples, data or miscellaneous information as given in this manual.
	HEINZMANN shall not provide any guarantee for the design and planning of the overall technical system. This is a matter of the operator its planners and its specialist engineers. They are also responsible for checking whether the performances of our devices match the intended purpose. The operator is also responsible for a correct initial start-up of the overall system.

Version	Description of Changes	Date	Edited by
02-05	created	2004-11-30	DeM
	Supplemented by chapter 3 Installation	2005-02-03	ShD
11-07	Chapter 3.3 RS485-two-wire-system corrected	2007-11-19	ShD
	Front page and page header updated	2007-11-20	DeM
	Chapter Order Specifications for Manuals, appendixes FAX Replay and Subsidiaries deleted	2007-11-20	DeM
	Minor changes	2007-11-20	DeM
08-14	Chapter 4.2 Supported function codes and 0 Supported exception codes updated	2014-07-08	EnJ
	Parameter for Modbus Extended in Chapter 5.1 Configuration of interface added	2014-07-08	EnJ
	Chapter 5.3 Write data and subchapter revised	2014-07-08	EnJ
	Chapter Overview Table deleted	2014-08-08	DeM
	Front page and warning notices updated	2014-08-08	DeM
	Minor changes	2014-08-08	DeM

Version Information

Table of Contents

Page

1 Safety instructions and related symbols	9
1.1 Basic safety measures for normal operation	
1.2 Basic safety measures for servicing and maintenance	
1.3 Before putting an installation into service after naintenance and repair works	
2 Introduction	11
2.1 Message format of data transmission	
2.2 Example of a data transmission	
	12
3 Installation	14
3.1 Bus topology	14
3.2 Bus configuration	15
3.3 RS485-two-wire-system	16
3.3.1 Bus cable in RS485-two-wire-systems	18
3.3.2 Derivation cable in RS485-two-wire-systems	18
3.4 RS485-Four-wire-system	19
3.4.1 Bus cable in RS485-four-wire-systems	20
3.4.2 Derivation cable in RS485-four-wire-system	21
3.5 RS232 Operation	21
3.6 Slave participant	22
3.7 Master participant	22
3.8 Reference potential	22
3.9 Shield	23
3.10 Line termination	25
3.11 Line polarization	26
3.12 Bus accessories	27
3.13 Device side connection module	27
3.14 Connector plug and socket	27
4 Module functions	28
4.1 Device address	
4.2 Supported function codes	
4.3 Supported exception codes	
5 Parameterization and commissioning	
5.1 Configuration of interface	
5.2 Reading data	
5.3 Write data	
5.3.1 Basic version	
5.3.2 Extended version	36

5.3.3 Timeout monitoring	
5.3.4 Assignment of sensor values to sensors	
5.3.5 Assignment of binary values to switching functions	
5.3.6 Assignment of Modbus functions (extended version only)	
5.4 Diagnostic counter	
6 Technical data	
7 Parameter description	
7.1 List 1: Parameters	
7.2 List 2: Measurements	
7.3 List 3: Functions	
7.4 List 4: Curves and maps	
8 Index of Figures	46
9 Index of Tables	47
10 Index	

1 Safety instructions and related symbols

This publication offers wherever necessary practical safety instructions to indicate inevitable residual risks when operating the engine. These residual risks imply dangers to

- Personnel
- Product and machine
- The environment

The primary aim of the safety instructions is to prevent personal injury!

The signal words used in this publication are specifically designed to direct your attention to possible damage extent!

A DANGER	DANGER indicates a hazardous situation the consequence of which could be fatal or severe injuries if it is not prevented.
A WARNING	WARNING indicates a hazardous situation which could lead to fatal injury or severe injuries if it is not prevented.
A CAUTION	CAUTION indicates a hazardous situation which could lead to minor injuries if it is not prevented.
NOTICE	NOTICE indicates possible material damage.
\bigwedge	Safety instructions are not only denoted by a signal word but also by hazard

Safety instructions are not only denoted by a signal word but also by hazard warning triangles. Hazard warning triangles can contain different symbols to illustrate the danger. However, the symbol used is no substitute for the actual text of the safety instructions. The text must therefore always be read in full!

This symbol does not refer to any safety instructions but offers important notes for better understanding the functions that are being discussed. They should by all means be observed and practiced.

1.1 Basic safety measures for normal operation

- The installation may be operated only by authorized persons who have been duly trained and who are fully acquainted with the operating instructions so that they are capable of working in accordance with them.
- Before turning the installation on please verify and make sure that
- - only authorized persons are present within the working range of the engine;
- - nobody will be in danger of suffering injuries by starting the engine.
- Before starting the engine always check the installation for visible damages and make sure it is not put into operation unless it is in perfect condition. On detecting any faults please inform your superior immediately!
- Before starting the engine remove any unnecessary material and/or objects from the working range of the installation/engine.
- Before starting the engine check and make sure that all safety devices are working properly!

1.2 Basic safety measures for servicing and maintenance

- Before performing any maintenance or repair work make sure the working area of the engine has been closed to unauthorized persons. Put on a sign warning that maintenance or repair work is being done.
- Before performing any maintenance or repair work switch off the master switch of the power supply and secure it by a padlock! The key must be kept by the person performing the maintenance and repair works.
- Before performing any maintenance and repair work make sure that all parts of engine to be touched have cooled down to ambient temperature and are dead!
- Refasten loose connections!
- Replace at once any damaged lines and/or cables!
- Keep the cabinet always closed. Access should be permitted only to authorized persons having a key or tools.
- Never use a water hose to clean cabinets or other casings of electric equipment!

1.3 Before putting an installation into service after naintenance and repair works

- Check on all slackened screw connections to have been tightened again!
- Make sure the control linkage has been reattached and all cables have been reconnected.
- Make sure all safety devices of the installation are in perfect order and are working properly!

2 Introduction

Modbus is a serial Master-Slave-protocol. This protocol is open and therefore freely accessible for any user. It provides two transmission modes RTU and ASCII and can be used on RS232 and RS485 or RS422.

For application of the Modbus protocol, the HEINZMANN control units of the THESEUS and HELENOS series must be equipped with an add-on pc board. The HEINZMANN Connection Module uses exclusively RTU mode. Throughout this document, it will therefore be only this mode that is made reference to. As a connection an RS485 or RS422 interface is provided. Hence an additional level converter will be required for connection to an RS232 interface.

Any details concerning the design and operation of the interface relate to the below specifications which can be downloaded from <u>www.modbus.org</u>.

- Hardware reference: Modbus over Serial Line Specification and Implementation Guide V1.02 Dec 20, 2006
- Protocol reference: Modbus Application Protocol Specification V1.1b3 April 26, 2012

The following sections give a general overview of the functionality, concept and structure of the Modbus protocol. Experienced Modbus users may skip them and continue with chapter \uparrow 3 *Installation*.

2.1 Message format of data transmission

Modbus data transmission always consists of a request/reply cycle. Request and reply are always executed sequentially, never simultaneously. To separate the individual messages from each other transmission pauses are required as delimiters.

The following Figure 1 shows a typical request-reply-cycle.

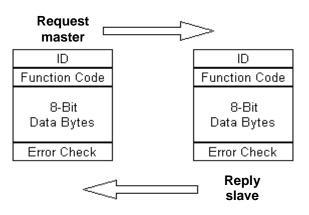
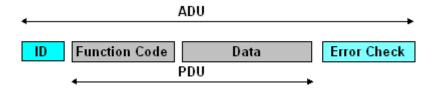



Figure 1: Request-reply-cycle

The Modbus protocol defines a simple Protocol Data Unit (PDU) independent of the type of network used and includes a function code indicating by which of the diverse actions the data is to be processed.

As additional information, the Application Data Unit (ADU) includes the participant address (ID) allowing Master and Multi-Slave operation, and a so-called Error Check defined as the check-sum over the characters to be transmitted. The address and the error check are added before and behind the character string as shown in Figure 2 and are transmitted together with it.

Figure 2: Protocol frame

In RTU Mode the error check is created by a well-defined procedure (Cyclical Redundancy Check, in short CRC). The error check comprises two bytes.

Besides the error check that is to be evaluated for the totality of a message's characters, it is also possible to set and perform a parity check for each individual byte of a message.

If checking any message for parity or CRC results in an error, processing the message is aborted and no response is returned.

In contrast to errors that are detected by examining the error checks (parity, CRC) and that are not responded to, there may occur errors caused by the user when the specifications for the data to be transmitted exceed the internal address and data ranges of the device or when a function code is not supported. In this case, the request is answered by an exception message indicating the cause by means of an exception code.

To obtain an assessment of the quality of the data exchange, a number of diagnostic counter have been implemented that are assigned to the various causes. These 16-bit counters are incremented on the occurrence of the respective event and can be read out both via Modbus and directly by a HEINZMANN diagnostics tool.

2.2 Example of a data transmission

The function code 0x03 "*Read Holding Registers*" is used to explain the sequence of Master request and Slave reply / Slave exception reply by the following tables (Table 1, Table 2 and Table 3). These tables show the formal structure of the transmitted character strings. The last column contains a numeric example in hexadecimal notation.

ID	0 to 247 (decimal)	Slave address	01		
Function	1 to 255 (decimal)	Function to be performed	03		
Data	Starting Address High	Starting address of data register (high byte)	00		
	Starting Address Low	Starting address of data register (low byte)			
	No. of Registers High	Number of data (high byte)	00		
	No. of Registers Low	Number of data (low byte)	01		
CRC	CRC Low	Error check CRC (low byte)	84		
	CRC High	Error check CRC (high byte)	0A		

Table 1: Master request

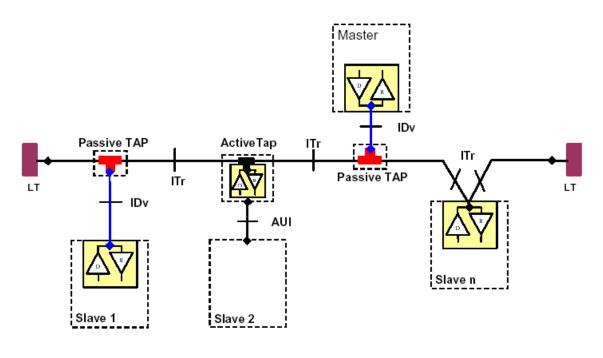
ID	0 to 247 (decimal)	Slave address		
Function	1 to 255 (decimal)	Function to be performed	03	
ByteCount	2 to 255 (decimal)	Number of data bytes	02	
Data	Register Value High	Data value (high byte)		
	Register Value Low	Data value (low byte)	00	
CRC	CRC Low	Error check CRC (low byte)	B8	
	CRC High	Error check CRC (high byte)		

Table 2: Slave reply

ID	0 to 247 (decimal)	Slave-Adresse				
Function	1 to 255 (decimal)	Function to be performed $+ 0x80$	83			
Data	Data Byte	Exception code	02			
CRC	CRC Low	Error check CRC (low byte)	C0			
	CRC High	Error check CRC (high byte)	F1			

 Table 3: Slave exception reply

3 Installation


The installation of a Modbus data bus system requires particular care, especially with regard to electromagnetic compatibility as well as to the data transmission rate to be obtained in dependence on type and length of the conductor. In order to avoid errors in the precommissioning phase, the most important points concerning the installation will be discussed in advance. More details will be dealt with in later chapters or are to be found in the Modbus Specification, see section $\uparrow 2$ Introduction.

Connecting a HEINZMANN control unit to a serial data bus system according to EIA/TIA-485/422 Standard for using the Modbus protocol requires that the control unit be equipped with the Modbus connection module.

3.1 Bus topology

The bus topology of the Modbus consists of a straight data link cable as shown in Figure 3. Basically, both point-to-point connections and multipoint connections are allowed.

Figure 3: Bus topology

A remote data cable (trunk) is running across some longer distance from a Modbus Master to one or more Modbus Slaves. Preferably, the individual Slaves are to be connected to the trunk directly by a linear structure (from node to node, Daisy-Chain structure) or by a short derivation cable.

The elements of the bus are:

 \mathbf{ITr} – Trunk Interface – a bus cable. For different distances, cables with suitable properties must be used, such as characteristic impedance, shield and line construction. The cable lines form a bus of linear structure which is characterized by having two ends. Maximum

length is 1,200 m. For more details see the sections \uparrow 3.3.1 Bus cable in RS485-two-wiresystems and \uparrow 3.4.1 Bus cable in RS485-four-wire-systems.

IDv – Derivation Interface – a derivation cable. By the derivation cable all bus signals, the reference potential and the shield must be conducted from the bus to the participant (Slave or Master). A derivation cable may connect several participants, e.g., the devices in a switch cabinet. Derivation cables must not be longer than 20 m. If there is a local tap with more than one derivation cables connected, the cable length must be limited to 40 m divided by the number of derivation cables. For more details see sections $\uparrow 3.3.2$ Derivation cable in RS485-two-wire-systems and $\uparrow 3.4.2$ Derivation cable in RS485-four-wire-system.

Passive TAP – a passive tap. The tap connects the bus cable with the derivation cables, i.e., the data lines, the line for the reference potential and the shield. Possibilities of earthing and termination can be provided within the tap.

Active Tap - a tap having an integrated bus driver. The rest is very much the same as with the passive tap.

AUI – Attachment Unit Interface – a data cable connecting active taps with the participants.

Slave – a participant serving as a Slave device. The maximum number of participants of the bus without repeater is 31. For more details see section 73.6 *Slave* participant.

Master - a participant serving as a Master device. Only one Master may be connected to the bus. For more details see section 73.7 *Master participant*.

LT – Line Terminator – Bus terminator. At either extremity of the bus a line termination must be provided. For more details see section 73.10 Line termination.

3.2 Bus configuration

The Modbus standard provides three communication configurations:

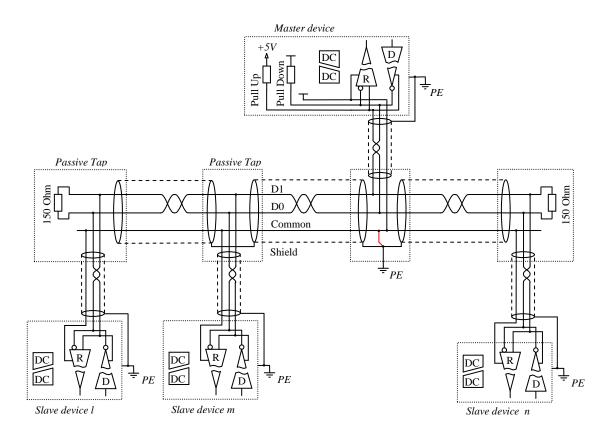
- according to RS485 in a two-wire-system,
- according to RS485 (or RS422) in a four-wire-system and
- according to RS232 (requiring accessory devices for HEINZMANN units).

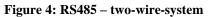
The first two configurations provide differential data transmission via a balanced twisted pair (or pairs) of conductors. Communication is supported by a reference potential (Common). Due to EMI, the standard Modbus requires using shielded cables. In these operating modes both multiple connections and a point-to-point connection will be allowed.

With RS232 operation, an unbalanced data transmission is basically given using a separate signal line for either direction, i.e. for transmission from Master to Slave and from Slave to

Master. This will also require an additional line with the reference potential (Common). RS232 operation is provided only for a point-to-point connection.

As communication equipment the following items will be of importance:


- Slave participant,
- Master participant,
- Bus cable,
- Derivation cable,
- Reference potential,
- Shield,
- Bus earthing,
- Line termination, and
- Line polarization.


3.3 RS485-two-wire-system

In a two-wire-system, bi-directional data are being transmitted, viz. Master-Slave and Slave-Master, by a common balanced twisted pair of conductors. There is, in addition, a separate conductor (e.g. a twisted pair of conductors) for the reference potential (Common). The complete cable must have an external shield.

The 2-wire-system constitutes the configuration most frequently used in practice. The layout of the bus must be about the same as shown in **Figure 4**. In a daisy-chain structure, no derivation cables may be used.

The following Table 4 defines the signals as in **Figure 4**.

Designati on	for Device	Contact at Participa nt	EIA/TIA- 485 Designati on	Description
D1	I/O	yes	B/B'	Transmitter-receiver-terminal 1 (+), voltage V1 (V1 > V0 for binary 1 and OFF-state respectively)
D0	I/O	yes	A/A'	Transmitter-receiver-terminal 0 (–), voltage V0 (V0 > V1 for binary 0 and ON-state respectively)
Common	-	yes	C/C'	Reference potential and optionally as supply potential
Shield	-	yes	-	Cable shield

Table 4 Signal definition – two-wire-system

The connectors A and A' pin no. 8 and 9 respectively and B and B' pin no. 4 and 5 respectively have to be shorted to use the two-wire-system with the Modbus connection module for HEINZMANN devices.

3.3.1 Bus cable in RS485-two-wire-systems

There exist two variants:

- a cable with one balanced twisted pair of conductors, a separate conductor, and with external shield,
- a cable with two balanced twisted pairs of conductors and with external shield.

The conductor size must generally be chosen for lengths of at least 1,000 m. Thus, for all conductors, including the shield, a gauge of at least AWG 24 must be provided. The characteristic impedance must be no less than 100 Ohms in the frequency range up to 100 kHz (for a baud rate of 19,200).

Basically, also cables with several twisted pairs of conductors can be used such as STP category 5 cables (4 pairs).

3.3.2 Derivation cable in RS485-two-wire-systems

The derivation cable must consist of:

- at least one balanced twisted pair of conductors for the differential data signal,
- a separate conductor or twisted pair of conductors for the reference potential (Common), and
- an external shield.

For derivations, for instance, the same cable can be used as for the bus.

Generally, also cables with several twisted pairs of conductors can be used.

Every derivation cable connects one or more participants to the bus (by passive taps). Therefore, the derivation cable includes

- the connection to the passive tap (connector, screw terminals, etc.), and
- the connection or connections to the participants (connectors, screws, terminals e.a.)

For every participant connection, attention should be paid to the device specific pin and bridge assignments (e.g., 4-wire to 2-wire, see **Figure 4**). The connectors A and A' pin no. 8 and 9 respectively and B and B' pin no. 4 and 5 respectively have to be shorted to use the two-wire-system with the Modbus connection module for HEINZMANN devices.

3.4 RS485-Four-wire-system

With 4-wire-systems, data transmission in both directions, viz. Master-Slave and Slave-Master, is made by two separate balanced twisted pairs of conductors. There is, in addition, a separate conductor (e.g., a twisted pair of conductors) for the reference potential (Common). The complete cable must have an external shield.

An example of the bus configuration is shown in **Figure 5**. In the daisy-chain structure no derivation cable may be used.

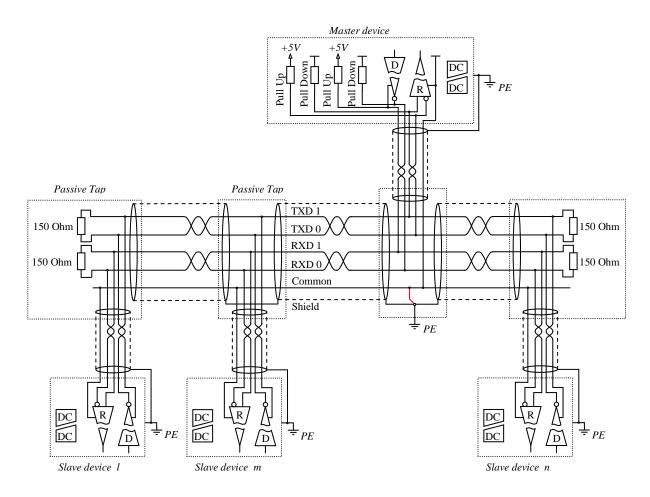


Figure 5: Signal definition – four-wire-system

The following Table 5 defines the signals of Figure 5.

Desig-	for Device		Contact at	EIA/T Design		Description	
nation	Master	Slave	Partici- pant	Master	Slave		
TXD 1	In	Out	yes	B'	В	Transmitter terminal 1 (+), voltage Vb (Vb > Va for binary 1 and OFF-state respectively)	

Desig-	for Device		Contact at	EIA/T Design		Description
nation	Master	Slave	Partici- pant	Master	Slave	
TXD 0	In	Out	yes	A'	А	Transmitter terminal 0 (–), voltage Va (Va > Vb for binary 0 and ON- state respectively)
RXD 1	Out	In	yes	В	B'	Receiver terminal 1 (+), voltage Vb' (Vb' > Va' for binary 1 and OFF-state respectively)
RXD 0	Out	In	yes	A	A'	Receiver terminal 0 (–), voltage Va' (Va' > Vb' for binary 0 and ON- state respectively)
Common	-	-	yes	C/C'	C/C'	Reference potential, optionally serving as supply potential
Shield	-	-	yes	-	-	Cable shield

Table 5: Signal definition – four-wire-system

3.4.1 Bus cable in RS485-four-wire-systems

There exist two variants:

- a cable with two balanced twisted pairs of conductors, a separate conductor and external shield,
- a cable with three balanced twisted pairs of conductors and with external shield.

The conductor size must generally be chosen for lengths of at least 1,000 m. Thus, for all conductors including the shield a gauge of at least AWG 24 must be provided. The characteristic impedance must be no less than 100 Ohms in the frequency range up to 100 kHz (with a baud rate of 19,200).

Basically, also cables with several twisted pairs of conductors may be used such as STP category 5 cables (4 pairs).

3.4.2 Derivation cable in RS485-four-wire-system

The derivation cable must have:

- at least two balanced twisted pairs of conductors for the differential data signal,
- a separate conductor or twisted pair of conductors for the reference potential (common), and
- an external shield.

For the derivation, for instance, the same cable can be used as for the bus.

Generally, also cables with several twisted pairs of conductors can be used.

Every derivation cable connects one or more participants to the bus (by passive taps). Therefore, the derivation cable includes

- the connection to the passive tap (connector, screw terminals, etc.), and
- the connection and connections to the participants (connectors, screw terminals, etc.) respectively.

For every participant connection, particular attention should be paid the device specific pin assignments.

3.5 RS232 Operation

With RS232 operation, an unbalanced data transmission is basically given using a separate signal line for either direction, i.e. for transmission from Master to Slave and from Slave to Master. This will also require an additional line with the reference potential (Common).

In RS232 operation, the Modbus standard is characterized by the following peculiarities:

- RS232 operation is only provided for point-to-point connections.
- Only a shielded cable may be used as a bus line
- Capacitance between the signal line and the Common line may not exceed 2,500 pF. This implies that the length of the bus line will be limited.
- Neither termination nor polarization of the bus.

The Slave devices by HEINZMANN support RS485 in two-wire and four-wire operation. Applications in RS232 operation will require additional RS232-RS485 interface adapters.

3.6 Slave participant

The maximum number of devices to be connected to a bus without repeater is up to 31 Slave devices plus one Master device.

All Slave participants must support:

- the 2-wire or 4-wire RS485 standard for two-wire-systems, and
- the 4-wire RS485 standard for four-wire-systems

Every participant must have a potential separation. By this, an electrically isolated communication is established offering these advantages:

- it is suitable for relatively long distances (up to 1,200 m), especially for industrial applications,
- it provides increased immunity against electromagnetic noise, and
- it inhibits larger currents from flowing in case of magnetic disturbances and different earthing potentials.

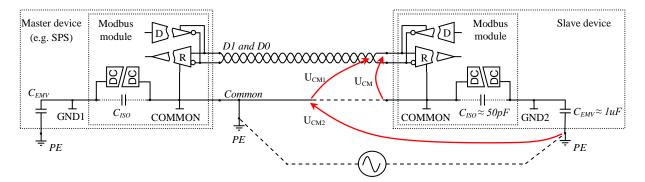
3.7 Master participant

By principle, only one Master participant is allowed on the bus. It must support:

- the 2-wire or 4-wire RS485 standard for two-wire-systems, and
- the 4-wire RS485 standard for four-wire-systems

It must also have a potential isolation. Normally, the Master device implements a bus polarization, see also section $\uparrow 3.11$ Line polarization.

3.8 Reference potential


By means of a separate line all bus participants are pulled onto a common reference potential.

The Modbus standard requires this line to be connected with the protective earthing conductor (PE – Protective Earth) preferably on the Master or on its tap. There is only one single earthing point allowed. This rule is observed by the examples in **Figure 4**, **Figure 5**, **Figure 7** and **Figure 8**.

Although symmetric data transmission as compared with RS232 (asymmetric transmission) shows a relatively greater immunity against interferences and the signal level is to be directly recognized at the data lines, communication is additionally supported by the reference potential (Common).

 U_{CMI} – Common mode voltage from transmitter with interference induced among the conductors within the bus cable. U_{CM2} – Interference induced between Common line and protective earthing conductor.

Figure 6: Reference potential

The indicated common mode voltage U_{CM} must not exceed the level of -7/+12 V (specific working range). The reference potential (Common) is to be connected to all participants. Then $U_{CM} = U_{CM1}$ will hold for interferences.

3.9 Shield

The Modbus standard requires a shielded cable.

According to this standard, the shield of every cable must be connected at one end to the protective earthing conductor (PE). The shield of any cable is to be connected either to the shield of the other cable or at one of its extremities to protective earthing. The admissible variants are shown in **Figure 4**, **Figure 5**, **Figure 7** and **Figure 8**.

According to our recommendations, the optimum shield configuration will be best as follows:

- A common shield for the bus cables. The only earthing point must preferably be located on the Master or its tap.
- A separate shield for the derivation cables. The only earthing point must be located in the participant's cubicle.

These rules are observed by the examples in Figure 4, Figure 5 and Figure 8.

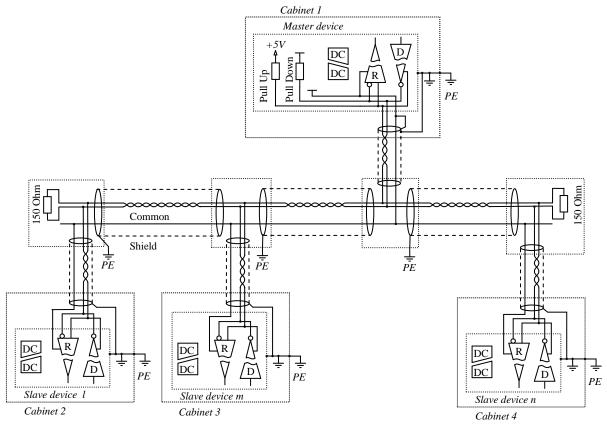
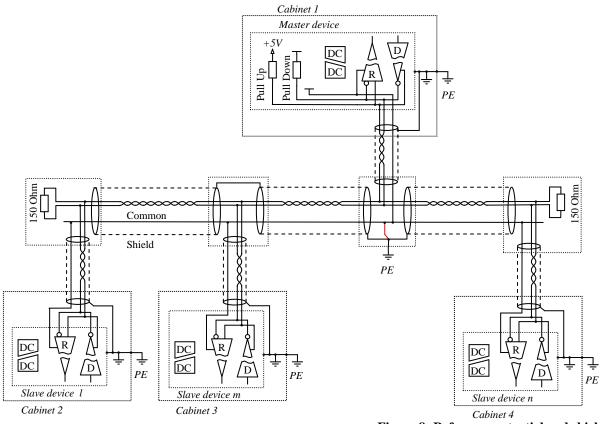
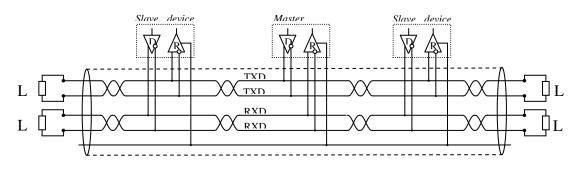


Figure 7: Reference potential and shield




Figure 8: Reference potential and shield

The external shield serves as an electrostatic and electromagnetic shield and must not be used as a conductor for the reference potential. The shield must not have a second electric connection to the earthing bus or to the casing.

3.10 Line termination

Termination of the data line is a measure recommended according to Modbus standard.

In order to obtain optimum transmission quality and/or signal quality, particularly over long distances, the data line is to have a termination as a twisted data conductor pair at both extremities according to **Figure 9**. For this, termination load must correspond to the characteristic impedance of the data line.

Figure 9: Line termination in four-wire-system

The Modbus standard permits two quasi optimum termination methods:

- AC termination on either end a serial RC element with capacitor: 1 nF, 10 V minimum and with resistor 120 Ohms, 0.25 W.
 Advantage: maximum signal level up to 5 Vpp.
 Disadvantage: poor reflection behaviour.
- DC termination on either end a resistor 150 Ohm, 0.5 W.
 Advantage: good reflection behaviour.
 Disadvantage: smaller signal level (e.g., silent state of about 0.27 Vpp).

Preferably, DC termination should be chosen. It is depicted both in Figure 4 and Figure 5.

Termination can be implemented:

- at the bus end in the device connection in the daisy-chain structure, for this see also section 73.1 Bus topology.
- at the bus end in the participant in the daisy-chain structure if this possibility is provided in the participant,
- in the passive tap at the bus end (see Figure 4 and Figure 5) or
- in the active tap at the bus end.

The termination must not be installed in the derivation cable.

3.11 Line polarization

A remote data cable needs a polarization for each pair of data conductors which is to be implemented preferably in the Master device or in its tap. Consequently, there is no need for polarization in the Slave devices.

Polarization is to be built using the following components:

- Pull-up resistors that are to be connected against 5 V DC and to signal + (TXD1, RXD1 or D1), and
- Pull down resistors that are to be connected against the reference potential (Common) and to signal + (TXD1, RXD1 or D1).

For all polarization resistors identical values should be chosen that may range from 450 Ohms to 650 Ohms. Polarization requires a 5 V DC supply. A detailed configuration of the polarization is depicted in **Figure 10** and outlined in **Figure 4** and **Figure 5**.

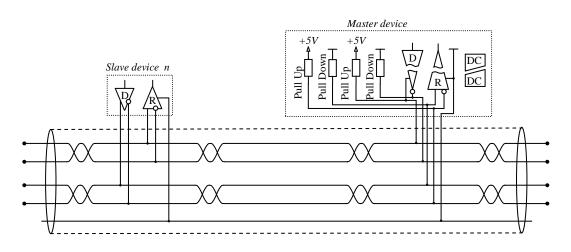


Figure 10: Line polarization in a four-wire-system

If the polarization is implemented in the active/passive tap of the Master device the tap must be supplied 5 V DC either from the Master device or from an electrically separated source.

Line polarization serves to set the OFF-state, where the OFF-state designates the silent state when there is no transmission from any participant. Actually in silent state, however, a polarization current between 3.6 and 5.1 mA DC must be flowing. With a DC termination by 150 Ohms, this will in silent state cause a differential signal of 0.27 to 0.38 V DC. The maximum polarization current will increase interference immunity.

3.12 Bus accessories

The taps constitute an important element of the bus. As a passive tap for Modbus every suitable bus tap can be used (e.g., Fieldbus, CAN, Ethernet).

The possibility of termination and polarization is already provided in certain taps, such as

- Schneider-Electric, TSX SCA 64 connection box,
- Schneider-Electric, TSX SCA 50,
- Phoenix Contact, PSM PTK (passive RS-485 T-tap),
- Weidmüller, Fieldbus components.

3.13 Device side connection module

In accordance with the EIA/TIA-485/422 standard, the HEINZMANN connection module is designed as a 4-wire interface with separate transmission and reception lines. Due to this, both connection types as a 2-wire and a 4-wire interface can be used. For 2-wire operation, this can be achieved by simply paralleling two lines RX and TX of identical polarity in the connector.

Electrical isolation between bus connection and control unit is provided. On the communication side, the Slave devices by HEINZMANN have no contacting between the reference potential and protective earthing (PE) nor between the case of the connection and protecting earthing (PE).

Electric shock hazard

Contact with communication lines, shield or reference potential might cause electric shock.

> Never touch communication lines, shield or the reference potential

3.14 Connector plug and socket

The device side connector socket is a:

• 9 pole Sub-D female connector.

The bus or cable side coupler is a:

• 9 pole Sub-D male connector.

Regarding the specifications concerning the pin assignment of the connectors see section \uparrow 6 *Technical data*.

4 Module functions

The HEINZMANN control unit is always defined as a Slave and by request from the connected Master can be made to execute a data transfer as determined by the function code. In accordance with the function code, the reply following this request may consist of a readout of data, an acknowledgement of data received, an exception response or no response.

4.1 Device address

The device addresses of the participants (ID) of the network must be set by the user in the participant device. Every ID may be assigned only once within a bus segment.

In assigning device addresses it is particularly important to ensure that one and the same address is not assigned to several devices. Such a failure may result in abnormal bus performance so that the Master will not be able to communicate with all Slaves connected to the bus.

Broadcast in Multi-Slave operation or in transmission only mode: Requests under Slave address 0 are accepted by the HEINZMANN control unit but will be without any function! The reaction of the control unit will be no response.

4.2 Supported function codes

The following Table 6 lists all supported functions from the Modbus function stock together with a brief description. Whenever an unknown function code is requested by the Master the corresponding exception response will be returned.

Function Code	Function Designation	Brief Description
0x03	Read Holding Register	Read access to one or more data words, for transmission of parameter values or measurements of the control unit
0x06	Write Single Register	Write access to a data word
0x08	Diagnostics	Diagnostic function, e.g., reading out the diagnostics counters
0x10	Write Multiple Register	Write access to one or more data words

Table 6: Function codes

The diagnostics function is confined to the sub-function codes that are specified in Table 7; any other sub-functions are not supported and are rejected through an exception response. The request data field or data word is to be assigned the value 0x0000 except for the sub-function code 0x0000 which supports any length and selectable values of the data words.

This functionality serves for diagnosing the communication result and allows to individually or globally reading out and reset the counter states that are being incremented with regard to success, error of communication, etc.

Sub-function code	Designation	Brief Description
0x0000	Return Query Data	Request is echoed back
0x0002	Return Diagnostics Register	The data of the sub-functions codes 0x0B to 0x12 are returned in this order
0x000A	Clear Counters and Diagnostic Registers	The counter states of the sub-function codes 0x0B to 0x12 are reset to zero
0x000B	Return Bus Message Count	Quantity of valid messages received is returned
0x000C	Return Bus Communication Error Count	Quantity of errors encountered in receiving messages is returned
0x000D	Return Bus Exception Error Count	Quantity of transmitted exception responses is returned
0x000E	Return Slave Message Count	Quantity of transmitted messages is returned
0x000F	Return Slave No Response Count	Quantity of received messages requiring no response is returned
0x0010	Return Slave NAK Count	Zero is returned
0x0011	Return Slave Busy Count	Zero is returned
0x0012	Return Bus Character Overrun Count	Quantity of messages is returned that due to a character overrun condition were not correctly received

Table 7: Sub-functions of the diagnostic function

4.3 Supported exception codes

The possible exception codes that may be contained in an exception response derive from the function codes that are supported. An exception response is returned as a reaction to any request from the Master when the specifications concerning the data to be transmitted exceed the device's internal address and data ranges or when a function code is not supported. Table 8 offers a list of the supported exception codes of a HEINZMANN control unit.

Exception Code	Designation	Brief Description
0x01	Illegal Function	Function code is not supported
0x02	Illegal Data Address	Data address exceeds the internal data range as provided by the device
0x03	Illegal Data Value	Quantity of data exceeds the internal data range as provided by the device
0x04	Slave Device Failure	Device can not process the data

Table 8: Exception codes

5 Parameterization and commissioning

Parameterization of the module is to be performed exclusively by means of the software of the HEINZMANN basis device, which will require either DcDesk 2000 as a Windows[®] programme for visualizing and configuring the input and output data of digital HEINZMANN control devices, or the Hand Programmer HP-03-03 as a diagnostics tool. For more details, please refer to

- Operation Manual Communication Programme DcDesk 2000, Manual No. DG 00 003-e,
- Operating Instructions Hand Programmer HP-03-03, Manual No. DG 04 002-e,
- PRIAMOS / HELENOS Basic Information 2000 for Digital Governors Level 6, Manual No. DG 00 001-e and
- THESEUS Control Systems for Electronically Controlled Generator Sets in Isolated and Mains Parallel Operation, Manual No. DG 97 002-e.

5.1 Configuration of interface

The configuration of the interface requires parameterizing the baud rate used, the transmission type and the device address within the bus system. The transmission type includes specifications concerning the parity bit and the number of stop bits. In addition, it is necessary to activate the complete Modbus functionality within the HEINZMANN control device. To do so, the user will have to pre-setting the following parameters and function parameters:

21800 Modb:Baudrate	Parameter baud rate,
21801 Modb:SlaveID	Specific device address as Slave,
25800 ModbusOn	On/Off switch for Modbus functionality,
25801 Modb:ParityBitOn	Selection transmission type with or without parity bit,
25802 Modb:ParityOddOrEven	Selection of odd or even parity if parity bit is selected
25803 Modb:OneOrTwoStopBit	Selection of one or two stop bits
25804 Modb:ExtendedOn	Selection of the Modbus functionality: parameter values can also be set in the extended version
measurement	

The measurement

23800 Modb:Baudrate	Indication value baud rate
---------------------	----------------------------

will indicate whether the device was able to set the baud rate as selected by means of the respective parameter.

Any changes of the parameter 21800 Modb:Baudrate or of the function parameters 25800 ModbusOn, 25801 Modb:ParityBitOn, 25802 Modb:ParityOddOrEven and25803 Modb:OneOrTwoStopBit will be effective only after saving the changes and resetting the control unit. The function parameter 25804 Modb:ExtendedOn is only available in the Modbus Extended Version.

Table 9 gives an overview of the options for setting the transmission types with regard to parity bit and stop bits.

	No parity with one stop bit	No parity with two stop bits	Even parity with one stop bit	Odd parity with one stop bit
25801 Modb:ParityBitOn	0	0	1	1
25802 Modb:ParityOddOrEven	Х	Х	0	1
25803 Modb:OneOrTwoStopBit	1	0	1	1

Table 9: Setting for transmission type

Example of parameterization:

Modbus functionality is to be activated with the baud rate set to 9600 Baud and the Slave device address to 1. The data transmission type for a character is to be selected as including one bit for even parity and one stop bit. It should be noted that after making modifications to the settings for the baud rate, the activation of the functionality and the transmission type these changes must be saved and the control unit reset.

Number	Parameter	Value	Unit
21800	Modb:Baudrate	9.600	kBaud
21801	Modb:SlaveID	1	
25800	ModbusOn	1	
25801	Modb:ParityBitOn	1	
25802	Modb:ParityOddOrEven	0	
25803	Modb:OneOrTwoStopBit	1	
Indication	<u>n</u>		
23800	Modb:Baudrate	9.600	kBaud

Number	Parameter	Value	Unit
21800	Modb:Baudrate	9.600	kBaud
21801	Modb:SlaveID	247	
25800	ModbusOn	1	
25801	Modb:ParityBitOn	1	
25802	Modb:ParityOddOrEven	0	
25803	Modb:OneOrTwoStopBit	1	

The standard default settings on shipping the device are

On request, the shipping state can be modified in dependence of customer wishes and project requirements.

5.2 Reading data

A read access to one or more data words serves for the transmission of parameter values or measurements of the control unit to the Master device on the Modbus. For this purpose, the function code 0x03 "*Read Holding Register*" is to be used, see also section 74.2 Supported function codes.

As regards curve parameters, a data array ranging from 29200 to 29299 Modb:TxParamSet(x) (or Modb:ParamSet(x) for Extended Version) is available for the user and can be accessed via the function code 0x03. The start address specified in the request message corresponds with the index of the data array which is limited to 100 entries. The quantity of data to be transmitted beginning with this index is given by the number of registers specified in the request message.

The data field is to be assigned the parameter numbers whose measuring or parameter values are to be transmitted. Particular care should be taken to enter the numbers consecutively beginning with the index zero and without gaps. Note that from the first invalid parameter number on all subsequent entries will be ignored. The following parameter numbers are defined as invalid:

- parameter number zero,
- any parameter number unknown to the control unit, or
- any parameter number associated with a parameter whose level is higher than the access level for the Modbus which on principle is limited to four.

By being invariably set to four the access level for the Modbus allows to transmit all measurements and indication values as well as all application specific parameters.

The user is informed about the maximum number of data words that can be read out by the measurement

23810 Modb:NoOfTxParams

Number of valid parameter numbers in the data array.

Example of parameterization:

2905

2909

OilPressure

OilTemp

Speed, oil pressure and oil temperature are to be read out via Modbus. A control unit of the HELENOS series is being used.

Number	Parameter	Value	Unit
29200	Modb:TxParamSet(0)	2000	
29201	Modb:TxParamSet(1)	2905	
29202	Modb:TxParamSet(2)	2909	
29202	Modb:TxParamSet(3)	0	
Indication	<u>n</u>		
23810	Modb:NoOfTxParams	3	
2000	Speed	1500.2	1/min
2905	OilPressure	3.15	bar
2909	OilTemp	-10.2	$^{\circ}C$
External	Value Ranges		
2000	Speed	0.04000.0	1/min

The data are transmitted by their external value ranges. As regards the value ranges of the different parameters the user should refer to the publications describing the HEINZMANN control devices or read them out directly from the control unit using one of the HEINZMANN diagnostics tools. To interpret the data words transmitted correctly, account must be taken of the number of decimal places and of whether the value range can also be negative.

0.00..10.00

-100.0..1000.0

bar

 $^{\circ}C$

In the above example, the data word for speed will be transmitted by the value 15002 as obtained from $1500.2 \cdot 10$ for one decimal place, that for oil pressure by the value 315 as obtained from $3.15 \cdot 100$ for two decimal places, and that for oil temperature by -102 as obtained from $-10.2 \cdot 10$ for one decimal place.

Since speed and oil pressure can assume positive values only, it is but the number of digital places that must be taken into account as powers of ten. Likewise, if oil temperature is interpreted as already signed, it will also be the number of digital places that is to be evaluated as power of ten.

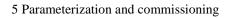
If oil temperature is evaluated as not yet signed the above example will yield a data word having the value 65,434. Any values greater than or equal to 32,768 are to be interpreted as negative values provided the external value range admits of negative values. The correct signed value is obtained as the difference between the data word and 65,536, and as a

second step it is but the number of digital places that must be taken into account to calculate the final value.

If in the above example any request should include a start address equal or greater than two or if the quantity of data to be read exceeds two data words, an exception response will be transmitted.

5.3 Write data

A given data field can be written to by means of the function codes 0x06 "Write Single Register" (single write mode) and 0x10 "Write Multiple Register" (multiple write mode), see also section 74.2 Supported function codes. The write access to one or more data words allows to further process received data within the control device as external input quantities.


The implementation of the HEINZMANN Modbus differs fundamentally between the basic and the extended version. In contrast to the extended version, the basic version only has write access rights for the Modbus switching functions and sensors, which are predetermined and fixed. The following Table 10 provides information about the write access rights associated with the different versions.

Parameter Lists	Basic	Extended
Parameter	-	Х
Functions	-	Х
Curves	-	Х
Measurements (general)	-	-
Measurements (Modbus functions)	-	Х
Measurements (Modbus binary values)	Х	Х
Measurements (Modbus sensor values)	Х	X

Table 10: Write access rights

Measurements (Modbus functions)

23816 <i>Modb:SaveParameter</i> Save parameter values in the control u	
	nit
Measurements (Modbus binary values)	
23820 <i>Modb:RxBinary</i> Binary values 16 bits wide	
Measurements (Modbus sensor values)	
23821 <i>Modb:RxSensor(0)</i> to	
23824 <i>Modb:RxSensor(3)</i> Sensor values	

5.3.1 Basic version

By standard, the size of the writeable data field is five words. Due to definition, the first word can be used for 16 binary switch input values and every subsequent data word for a sensor input value. This configuration is shown in Table 11 and may on request be extended according to customer or application needs.

Data Field				
Index		Туре		
0	8 Bit (high)	8 Bit (low)	switch	
1	16 Bit		sensor	
2	16 Bit		sensor	
3	16 Bit		sensor	
4	16	Bit	sensor	

Table 11: Write data

The data received by the control unit can be viewed via these indication values

23820 Modb:RxBinary	Binary values 16 bits wide, and
23821 Modb:RxSensor(0) to	
23824 Modb:RxSensor(3)	Sensor values.

5.3.2 Extended version

In the extended version, the sensor values and binary values are freely configurable via the 29200 Modb:ParamSet(x) data field. In addition to sensor and switching functions, parameters with an access level of less than or equal to 4 can also be specified. The data field that is used to read out data (see \uparrow 5.2 Reading data) should be populated with the corresponding parameter numbers, the parameter values of which should also be specified.

The data field can be activated using the function code 0x06 or 0x10, and the parameter and measured values specific to Modbus can be set. The start address given in the output corresponds to the data field index, for which the data field is limited to 100 entries. The number of data entries that will be transferred from the index is determined by the number of registers that should be populated, which is given in the output. If an array is to be populated, all of the registered parameters in the given array must possess write access. If this requirement is not fulfilled, a corresponding exception code (0x04 Slave Device Failure) will be returned.

Example of parameterization:

As in the above example, the speed, oil pressure and oil temperature must be read via Modbus. It must be possible to specify the PID parameters for the speed governor 100 Gain, 101 Stability and 102 Derivative using Modbus. A control unit of the HELENOS series is being used.

Number	Parameter	Value	Unit
29200	Modb:ParamSet(0)	2000	
29201	Modb:ParamSet(1)	2905	
29202	Modb:ParamSet(2)	2909	
29203	Modb:ParamSet(3)	100	
29204	Modb:ParamSet(4)	101	
29205	Modb:ParamSet(5)	102	
29206	Modb:ParamSet(6)	0	
<u>Activatio</u> 25804	<u>n</u> Modb:ExtendedOn	1	
Indication	<u>n</u>		
23810	Modb:NoOfParams	6	
2000	Speed	1500.2	1/min
2905	OilPressure	3.15	bar
2909	OilTemp	-10.2	$^{\circ}C$

5.3.3 Timeout monitoring

If binary and/or sensor values are to be transmitted to the HEINZMANN control unit in write mode, it should be noted that these values must be transmitted periodically in cyclical order to detect any failures or damages of the data transmission equipment. For this purpose, a time-out is initiated with the first write access whose time limit is to be set by means of the parameter 21820 *Modb:RxTimeOut*. With every valid reception of a request via the functions codes 0x06 or 0x10 the time-out is re-initialized. If the write access fails to occur within the pre-set reception time limit the error flag 3074 *ErrModbusComm* is set.

If a failure of Modbus communication occurs the standard reactions of the HEINZMANN control units to sensor errors will be applied for the respective sensor value. The binary values are assumed to be zero, and due to this the assigned switching functions are reset.

If it is only parameters (e.g. at the start of communication) that are to be specified in write mode, timeout monitoring is not strictly necessary. In this case, timeout monitoring can be deactivated by setting the time limit parameter to zero.

For further details concerning the parameterization of sensors and switching function, refer to the chapters *Sensors* and *Inputs and Outputs* of the respective Basis Information. In this brochure, it is only the specific extension of the particular functionality required for Modbus that will be dealt with.

5.3.4 Assignment of sensor values to sensors

The assignment of sensor values as inputs to sensors via Modbus is achieved by entering the desired channel numbers, in this case the respective index plus one, in the associated parameters from 900 *Assign*... onward. The selection of the sensor as Modbus sensor value is made by specifying the channel type in the parameters from 4900 *ChanTyp*... onward. For Modbus, it is always the value '6' that is to be specified as channel type.

49xx *ChanTyp...* = 6 Sensor value is being received via Modbus

The transmission of any sensor value from the Master to the HEINZMANN control unit operating as a Slave will on principle be made within the internal value range which is defined as ranging from 0 to 65535.

The scaling of the sensor value from 0% to 100% is equivalent to values from 0 to 65535 being transmitted via Modbus. In the above example this will yield the value 32767 for 50%.

Example of parameterization for basic version:

The power set point is to be received via Modbus as second sensor value. The sensor value is to be updated cyclically every two seconds. A control unit of the THESEUS series is being used.

Number Parameter		Value	Unit
900	Assign_PowerSetpoint	2	
980	PowerSetpointLow	0.0	%
<i>981</i>	PowerSetpointHigh	100.0	%
4900	ChanType_PowerSetp	6	
21820	Modb:RxTimeOut	2.5	S
Indication	n PowerSetpoint	50.0	%
3074	ErrModbusComm	0	
23821	Modb:RxSensor(0)	0.0	%
23822	Modb:RxSensor(1)	50.0	%
23823	Modb:RxSensor(2)	0.0	%
23824	Modb:RxSensor(3)	0.0	%

Example of parameterization for extended version:

The power set point is to be received via Modbus as second sensor value. The sensor value is to be updated cyclically every two seconds. A control unit of the THESEUS series is being used.

Number	Parameter	Value	Unit
900	Assign_PowerSetpoint	2	
980	PowerSetpointLow	0.0	%
<i>981</i>	PowerSetpointHigh	100.0	%
4900	ChanType_PowerSetp	6	
21820	Modb:RxTimeOut	2.5	S
29200	Modb:ParamSet(0)	23822	
Activatio 25804 Indicatio	Modb:ExtendedOn	I	
2900	PowerSetpoint	50.0	%
3074	ErrModbusComm	0	
23821	Modb:RxSensor(0)	0.0	%
23822	Modb:RxSensor(1)	50.0	%
23823	Modb:RxSensor(2)	0.0	%
23824	Modb:RxSensor(3)	0.0	%

5.3.5 Assignment of binary values to switching functions

The assignment parameters from parameter number 810 *Funct*... on may be used exclusively for switching functions whose state is to be modified via digital hardware inputs. With respect to the extended functionality of the switching functions the assignment parameters have been doubled by introducing the parameter numbers from 20810 *Comm*... onward. These parameters can now be used for switching functions that are to be set via some communication mode.

A binary value to be transmitted via Modbus can be easily assigned to a switching function by entering the bit number in the corresponding assignment parameter. Similarly to sensor assignment, the channel type of switching functions is to be specified for Modbus by '6'.

248xx *ChanTyp*... = 6 Binary value is to be received via Modbus

If the parameterization of a switching functions admits of both the hardware and the selected communication the two states will internally be combined by OR.

Example of parameterization for basic version:

By setting the binary input three via Modbus, operation is to be by fixed speed 1. The binary value is to be updated cyclically every ten seconds. A control unit of the HELENOS series is being used.

Number	Parameter	Value	Unit
20815	CommSpeedFix1	3	
21820	Modb:RxTimeOut	11.0	S
24815	ChanType_SpeedFix1	6	
Indicatio	<u>n</u>		
2815	SwitchSpeedFix1	1	
3074	ErrModbusComm	0	
23820	Modb:RxBinary	04	Hex

Example of parameterization for extended version:

By setting the binary input three via Modbus, operation is to be by fixed speed 1. The binary value is to be updated cyclically every ten seconds. A control unit of the HELENOS series is being used.

Number	Parameter	Value	Unit
20815	CommSpeedFix1	3	
21820	Modb:RxTimeOut	11.0	S
24815	ChanType_SpeedFix1	6	
29200	Modb:ParamSet(0)	23820	
Activatio	<u>n</u>		
25804	Modb:ExtendedOn	1	
Indication	<u>1</u>		
2815	SwitchSpeedFix1	1	
3074	ErrModbusComm	0	
23820	Modb:RxBinary	04	Hex

5.3.6 Assignment of Modbus functions (extended version only)

The extended version offers the facility to carry out specific functions in the control unit. The parameter number must be entered into the data field to enable the relevant function to be carried out. The following Modbus functions are possible:

23815	Modb:ResetDevice	Force reset of the control unit
23816	Modb:SaveParameter	Save parameter values in the control unit
_		

Example of parameterization:

The parameters must be stored in the control unit using Modbus.

Number	Parameter	Value	Unit
29200	Modb:ParamSet(0)	23815	
Activatio	<u>on</u>		
25804	Modb:ExtendedOn	1	

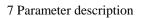
Indication

3851	LastIdentifier	94
23816	Modb:SaveParameter	1

5.4 Diagnostic counter

For the HEINZMANN control devices the following diagnostic counters have been implemented according to Modbus specification. They can also be read out via the function code 0x08 "*Diagnostics*", see also section 74.2 Supported function codes:

23801 Modb:BusMessageCnt	Quantity of valid messages received,
23802 Modb:CommErrorCnt	Quantity of faulty messages received,
23803 Modb:ExceptErrCnt	Quantity of exception messages transmitted,
23804 Modb:SlaveMessageCnt	Quantity of messages transmitted,
23805 Modb:SlaveNoRespCnt	Quantity of No response messages,
23806 Modb:BusCharOvrCnt	Quantity of messages not correctly received due to character overrun.


6 Technical data

Interface:	EIA/TIA-485/422 standard	
	4-wire interface	
Insulation:	electrically separated	
Insulation voltage:	1000 Volts _(RMS) , 1 min	
Signal voltages against reference potential (Common):	-7 V to +12 V D.C.	
Interference immunity (ESD):	to EN 61000-4-2 (intended)	
Connector:	D-Sub 9 (male)	
Signal assignment:	according to Modbus Specification 4-wire interface	

Pin	Signal	EIA/TIA- 485/422	Description
8	RXD0	A'	Receiver connection 0
4	RXD1	B'	Receiver connection 1
9	TXD0	А	Transmitter connection 0
5	TXD1	В	Transmitter connection 1
2	VP		+5 V DC (depending on version)
1	Common	C/C'	Signal reference potential
Case			potential free

Table 12: Signal assignment

Visual error indication:	none
Data transmission:	RTU Mode
Baud rate:	9,600, 19,200 Baud
Parity:	no parity, even or odd parity
Stop bits	one or two
Function codes:	see section \uparrow 4.2 Supported function codes
Exception codes:	see section \uparrow 4.3 Supported exception codes

7 Parameter description

7.1 List 1: Parameters

21800	Modb:Baudrate	e	
	Level:	4	<u>Modbus</u>
	Range:	9.619.2 kBaud	Parameter baud rate, modification only effective after
	Page(s):	32	reset
21801	Modb:SlaveID		
	Level:	4	Modbus
	Range:	1247	Unique device address as Slave
	Page(s):	32	
21820	Modb:RxTime	Out	
	Level:	4	Modbus
	Range:	060 s	Reception time limit for requests for writing binary
	Page(s):	38	values or sensor values

7.2 List 2: Measurements

3074	ErrModb	usComm	
	Level:	1	Modbus
	Range:	01	Error indication Modbus communication
	Page(s):	38	
3174	SErrMod	busComm	
	Level:	1	Modbus
	Range:	0255 or 01	Error Counter or sentinel for the occurrence of
			3074 ErrModbusComm
23800	Modb:Ba	udrate	
	Level:	4	Modbus
	Range:	9.619.2 kBaud	Indication value for the pre-set baud rate
	Page(s):	32	
23801	Modb:BusMessageCnt		
	Level:	4	Modbus
	Range:	065535	Quantity of valid received messages
	Page(s):	42	
23802	Modb:CommErrorCnt		
	Level:	4	Modbus
	Range:	065535	Quantity of faulty received messages
	Page(s):	42	

		<u> </u>	
23803	Modb:ExceptEr		N / 11
	Level:	4	Modbus
	Range:	065535	Quantity of exception messages transmitted
	Page(s):	42	
23804	Modb:SlaveMes	-	
	Level:	4	Modbus
	Range:	065535	Quantity of messages transmitted
	Page(s):	42	
23805	Modb:SlaveNoF	-	
	Level:	4	Modbus
	Range:	065535	Quantity of messages received requiring no response
	Page(s):	42	(here: only transmission message from Master)
23806	Modb:BusChar	OvrCnt	
	Level:	4	Modbus
	Range:	065535	Quantity of messages not correctly received due to
	Page(s):	42	character overrun
23810	Modb:NoOfTxF	Params	
	Level:	4	Modbus Basic Version
	Range:	0100	Number of valid parameter numbers entered in the data
	Page(s):	35	field for read access
23810	Modb:NoOfPar	ams	
	Level:	4	Modbus Extended Version
	Range:	0100	Number of valid parameter numbers entered in the data
	Page(s):	35	field for read access and write access
23815	Modb:ResetDev	rice	
	Level:	4	Modbus Extended Version
	Range:	01	Modbus function: Force reset of the control unit
	Page(s):	36, 41	
23816	Modb:SavePara	imeter	
	Level:	4	Modbus Extended Version
	Range:	01	Modbus function: Save parameter values in the control
	Page(s):	36, 41	unit
23820	Modb:RxBinary	<i>y</i>	
	Level:	4	Modbus
	e	0000FFFF Hex	Binary values for write access
	Page(s):	36	
23821	Modb:RxSensor	r(x)	
to	Level:	4	Modbus
23824	Range:	065535	Sensor values for write access
	Page(s):	36	

7.3 List 3: Functions

25800	ModbusOn		
	Level:	4	Modbus
	Range:	01	On/Off switch Modbus functionality. Modification will
	Page(s):	32	be effective after reset only
25801	Modb:ParityBitOn		
	Level:	4	<u>Modbus</u>
	Range:	01	Selection transmission mode with or without parity bit.
	Page(s):	32	Modification will be effective after reset only
			0 = no parity bit
			1 = with parity bit
25802	Modb:ParityOddOrEven		
	Level:	4	Modbus
	Range:	01	Selection odd or even parity with parity bit set.
	Page(s):	32	Modification will be effective after reset only
			0 = even parity
			1 = odd parity
25803	Modb:OneOrTwoStopBit		
	Level:	4	Modbus
	Range:	01	Selection one or two stop bits. Modification will be
	Page(s):	32	effective after reset only
			0 = two stop bits
			1 = one stop bit
25804	Modb:ExtendedOn		
	Level:	4	Modbus Extended Version
	Range:	01	Activation of Modbus Extended Version
	Page(s):	32	

7.4 List 4: Curves and maps

29200	Modb:TxParamSet(x)	1	
to	Level:	4	Modbus Basic Version
29299	Range:	029999	Data field for read access
	Page(s):	34	Any parameters or measurement numbers must be
			entered whose values will be transmitted on request
29200	Modb:ParamSet (x)		
to	Level:	4	Modbus Extended Version
29299	Range:	029999	Data field for read access and write access
	Page(s):	34	Any parameters or measurement numbers must be
			entered whose values will be transmitted on request or
			should be received

8 Index of Figures

Figure 1: Request-reply-cycle	.11
Figure 2: Protocol frame	. 12
Figure 3: Bus topology	. 14
Figure 4: RS485 – two-wire-system	. 17
Figure 5: Signal definition – four-wire-system	. 19
Figure 6: Reference potential	. 23
Figure 7: Reference potential and shield	. 24
Figure 8: Reference potential and shield	. 24
Figure 9: Line termination in four-wire-system	. 25
Figure 10: Line polarization in a four-wire-system	. 26

9 Index of Tables

13
13
13
17

10 Index

Access level
Baud Rate
Binary Value
Broadcast
Bus Cable14, 15, 16, 23
Bus Topology14
Channel Type
Connection Module11, 14, 27
Connector27, 42
Data Transmission11, 42
DcDesk 2000
Derivation Cable15, 16, 18, 19, 21, 23, 25
Device Address
Diagnostic Function
Diagnostics Tool12, 31, 34
EIA/TIA-485/422 Standard14, 27, 42
Error Check 12
Error Check
Exception Code12, 30, 42
Exception Code
Exception Code
Exception Code
Exception Code
Exception Code 12, 30, 42 Four-Wire-System 15, 19, 22 Function Code 11, 28, 42 0x03 12, 33 0x06 35 0x08 41
Exception Code 12, 30, 42 Four-Wire-System 15, 19, 22 Function Code 11, 28, 42 0x03 12, 33 0x06 35 0x08 41 0x10 35 Handprogrammer HP-03-03 31
Exception Code 12, 30, 42 Four-Wire-System 15, 19, 22 Function Code 11, 28, 42 0x03 12, 33 0x06 35 0x08 41 0x10 35
Exception Code 12, 30, 42 Four-Wire-System 15, 19, 22 Function Code 11, 28, 42 0x03 12, 33 0x06 35 0x08 41 0x10 35 Handprogrammer HP-03-03 31 Hardware Reference 11
Exception Code 12, 30, 42 Four-Wire-System 15, 19, 22 Function Code 11, 28, 42 0x03 12, 33 0x06 35 0x08 41 0x10 35 Handprogrammer HP-03-03 31 Hardware Reference 11 Insulation 42
Exception Code 12, 30, 42 Four-Wire-System 15, 19, 22 Function Code 11, 28, 42 0x03 12, 33 0x06 35 0x08 41 0x10 35 Handprogrammer HP-03-03 31 Hardware Reference 11 Insulation 42
Exception Code 12, 30, 42 Four-Wire-System 15, 19, 22 Function Code 11, 28, 42 0x03 12, 33 0x06 35 0x08 41 0x10 35 Handprogrammer HP-03-03 31 Hardware Reference 11 Insulation 42 Insulation Voltage 42 Interface 31, 42

Interference Immunity	2
Line Termination	6
Master15, 22, 23, 28, 30, 38	8
Master Participant	2
Parameterization	1
Parity12, 42	2
Parity Bit	5
Participant Address 12	2
Polarization16, 22, 20	6
Protocol Reference 1	1
Read Access	5
Reception Time Limit	3
Reference Potential 15, 16, 18, 19, 21, 22, 26, 27, 42	2
Reset Control Unit	4
RTU Mode11, 12, 42	2
Save Parameter Values	4
Sensor Value	4
Shield14, 15, 23, 23	5
Signal Assignment 42	2
Signal Voltages	2
Slave	8
Slave Participant	2
Socket	7
Stop Bits	5
Sub-Function Code	8
Switching Functions	9
Tap15, 18, 21, 22, 23, 25, 26, 2	7
Termination	5
Two-Wire-System	2
Visual Error Indication 42	2
Write Access	5